		mark	comment	sub
1(i)	0	B1		1
(ii)	$v=36+6 t-6 t^{2}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Attempt at differentiation	2
(iii)	$a=6-12 t$	$\begin{aligned} & \text { M1 } \\ & \text { F1 } \end{aligned}$	Attempt at differentiation	2
(iv)	```Take a = 0 so t=0.5 and v=37.5 so 37.5 m s.-1```	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Allow table if maximum indicated or implied FT their a cao Accept no justification given that this is maximum	3
(v)	either Solving $36+6 t-6 t^{2}=0$ so $t=-2$ or $t=3$ or Sub the values in the expression for v Both shown to be zero A quadratic so the only roots then $\begin{aligned} & x(-2)=-34 \\ & x(3)=91 \end{aligned}$	M1 B1 E1 M1 E1 B1 B1 B1	A method for two roots using their v Factorization or formula or ... of their expression Shown Allow just 1 substitution shown Both shown Must be a clear argument cao cao	5
(vi)	$\begin{aligned} & \|x(3)-x(0)\|+\|x(4)-x(3)\| \\ & =\|91-10\|+\|74-91\| \\ & =98 \text { so } 98 \mathrm{~m} \end{aligned}$	M1 A1 A1	Considering two parts Either correct cao [SC 1 for $s(4)-s(0)=64]$	3
(vii)	At the SP of v $\begin{gathered} x(-2)=-34 \text { i.e. }<0 \text { and } \\ x(3)=91 \text { i.e. }>0 \\ \text { Also } x(-4)=42>0 \text { and } \\ x(6)=-98<0 \end{gathered}$ Phy,threstipian athsTutor.com	M1 B1 B1	Or any other valid argument e.g find all the zeros, sketch, consider sign changes. Must have some working. If only a sketch, must have correct shape. Doing appropriate calculations e.g. find all 3 zeros; sketch cubic reasonably (showing 3 roots); sign changes in range 3 times seen	3
		19		

		mark		Sub
2(i)	$a=24-12 t$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Differentiate cao	2
(ii)	Need $24 t-6 t^{2}=0$ $t=0,4$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Equate $v=0$ and attempt to factorise (or solve). Award for one root found. Both. cao.	2
(iii)	$\begin{aligned} & s=\int_{0}^{4}\left(24 t-6 t^{2}\right) \mathrm{d} t \\ & =\left[12 t^{2}-2 t^{3}\right]_{0}^{4} \\ & (12 \times 16-2 \times 64)-0 \end{aligned}$ $=64 \mathrm{~m}$	M1 A1 M1 A1	Attempt to integrate. No limits required. Either term correct. No limits required Sub $t=4$ in integral. Accept no bottom limit substituted or arb const assumed 0. Accept reversed limits. FT their limits. cao. Award if seen. [If trapezium rule used. M1 At least 4 strips: M1 enough strips for 3 s . f. A1 (dep on $2^{\text {nd }} \mathrm{M} 1$) One strip area correct: A1 cao]	4
	total	8		

3	(i)	$\begin{aligned} & v=\int(4-t) \mathrm{d} t \\ & v=4 t-\frac{1}{2} t^{2}+c \quad(t=0, v=0 \Rightarrow c=0) \\ & v=4 t-\frac{1}{2} t^{2} \text { for } 0 \leq t \leq 4 \end{aligned}$ When $t=4, v=8$ and for $t>4, a=0$ so $v=8$ for $t>4$	M1 A1 B1 [3]	Attempt to integrate Condone no mention of arbitrary constant $a=0$ must be seen or implied	
	(ii)	$\begin{aligned} & s=\int\left(4 t-\frac{1}{2} t^{2}\right) \mathrm{d} t \\ & s=2 t^{2}-\frac{1}{6} t^{3} \end{aligned}$ When $t=4$, Nina has travelled $2 \times 4^{2}-\frac{1}{6} \times 4^{3}=21 \frac{1}{3} m$ When $t=5 \frac{1}{3}$, Nina has travelled $21 \frac{1}{3}+8 \times 1 \frac{1}{3}=32 \mathrm{~m}$	M1 A1 A1 F1 [4]	Again condone no mention of arbitrary constant Allow follow through from their $21 \frac{1}{3}$ Exact answer required; if rounded to 32 , award 0	
	(iii)	When $t=5 \frac{1}{3}$, Marie has run $6 \times 5 \frac{1}{3}=32 \mathrm{~m}$. Nina has also run 32 m so caught up Marie	B1 [1]	Allow an equivalent argument that when Marie has run $32 \mathrm{~m}, t=5 \frac{1}{3}$, as for Nina This mark is dependent on an answer 32 in part (ii) but allow this where it is a rounded answer and in this particular case the rounding can be in part (iii)	

		mark	notes
4(i)	For P : the distance is $8 T$ For Q: the distance is $\frac{1}{2} \times 4 \times T^{2}$	B1 B1 2	Allow - ve. Allow any form. Allow - ve. Allow any form.
(ii)	Require $8 T+\frac{1}{2} \times 4 \times T^{2}=90$ so $8 T+2 T^{2}-90=0$ so $T^{2}+4 T-45=0$ This gives $(T-5)(T+9)=0$ so $T=5$ since $T>0$	M1 A1 E1 M1 A1 5	For linking correct expressions or their expressions from (i) with 90 . Condone sign errors and use of displacement instead of distance. Condone ' $=0$ 'implied. The expression is correct or correctly derived from their (i). Reason not required. Must be established. Do not award if their 'correct expression' comes from incorrect manipulation. Solving to find + ve root. Accept $(T+5)(T-9)$. Condone $2^{\text {nd }}$ root not found/discussed but not both roots given.
		7	

5(i)	$a=6 t-12$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Differentiating cao	
(ii)	We need $\int_{1}^{3}\left(3 t^{2}-12 t+14\right) \mathrm{d} t$ $=\left[t^{3}-6 t^{2}+14 t\right]_{1}^{3}$ either $\begin{aligned} & =(27-54+42)-(1-6+14) \\ & =15-9=6 \text { so } 6 \mathrm{~m} \end{aligned}$ or $s=t^{3}-6 t^{2}+14 t+C$ $s=0$ when $t=1$ gives $0=1-6+14+C \text { so } C=-9$ Put $t=3$ to give $s=27-54+42-9=6 \text { so } 6 \mathrm{~m} .$	M1 A1 M1 A1 M1 A1	Integrating. Neglect limits. At least two terms correct. Neglect limits. Dep on $1^{\text {st }} \mathrm{M} 1$. Use of limits with attempt at subtraction seen. cao Dep on $1^{\text {st }} \mathrm{M} 1$. An attempt to find C using $s(1)=0$ and then evaluating $s(3)$. ca	
(iii)	$v>0$ so the particle always travels in the same (+ve) direction As the particle never changes direction, the final distance from the starting point is the displacement.	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \end{aligned}$	Only award if explicit Complete argument	
				2
				8

